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Abstract: 1-Isopropylidene-2-indanone(1) reacts with singlet oxygen in non-nucleophilic 

solvents to give the epoxyphenol 3. Compound 3 can be deoxygenated by treatment with P(OR),, 

to afford the regiospecifically hydroxylated phenol 5. 

The reactivity of a,B-unsaturated carbonyl systems towards singlet oxygen shows a 

dramatic dependence on the geometry of the enone.' Enones which are constrained to the s- 

trans conformation usually fail to react with '0, (,9 > 200) while enones capable of adopting 

an s-a conformation react readily with '0, (/I = 0.05 to 20).2**3 Footezb has recently 

reported the reaction of a variety of unsaturated esters with '0, and expressed the reactivity 

patterns observed in terms of a "gem effect" analogous to the "cis effect" reported earlier 

by Stephenson.& 

As part of our continuing interest in the factors which influence the reactivity of 

o,B-unsaturated carbonyl systems towards singlet oxygen we have studied the reaction of 

enones which do not possess abstractable j-hydrogen atoms. We chose as our initial substrate 

for study I-isopropylidene-2-indanone (1). Compound 1 was prepared in 49% yield from the 

enolphosphonate of L-indanone by treatment with 1.1 equiv. lithium diisopropylamide (-78" C, 

THF) followed by the addition of excess acetone. This directed aldol condensation is similar 

to the procedure developed by Weimers' but relies on the enhanced acidity of enolphosphonate 

of Z-indanone to allow the formation of the enolphosphonate anion which reacts with acetone. 
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The phosphoryl group then migrates to the 8-alkoxide oxygen, activating it for elimination. 

Reaction of 1 (1.43 mmol) with IO, (rose bengal sensitizer, 750W DOB-ODW tungsten 

halogen lamp) for 2 hrs at -35" C in methanol gave compound 2 as the only isolable product 

(49% yield after flash chromatography). When the reaction was carried out in CD,CN (under 

identical conditions) in a "C NMR tube a single product (as judged by 13C NMR)'was produced 

that decomposed on attempted isolation. If, after the photolysis, the CD,CN is evaporated 

at reduced pressure and methanol is added at -35"C, followed by warming to room temperature, 

the unstable intermediate is cleanly converted to 2 (45% isolated yield). The structure 3 

is proposed for the unstable intermediate based on the following facts: 1) ready conversion 

to 2 on treatment with methanol; 2) similarity of its "C NMR with that of 4 (prepared by 

epoxidation of 1, CF,CO,H, NaHCO,, CH,Cl,,O'C, 4 hrs) '; and 3) treatment of the CDJN solution 

of 3 with excess (CH,O),P at -35°C followed by warming to room temperature gave 5 (55% 

isolated yield).8 

3 X-CH, 5 XICH, 

Similarly the reaction of singlet oxygen with 6' in methanol at -35" C affords 7; 

however, 

requires 

requires 

We 

the reaction is not as clean as the reaction with 1. Also the oxidation of 6 

much longer reaction times. To achieve 25% conversion of 6 to 7 on a 1 mm01 scale 

irradiation for 24 hrs. 

propose that the reaction takes place by initial 4 + 2 cycloaddition of singlet 
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oxygen to give the endoperoxide 8 which can tautomerize to the hydroxy-o-quinoid system 9. 

Compound 9 can undergo intermolecular Michael addition of methanol to give 2 or 

intramolecular Michael addition of the hydroxyl group to give 3. As we have shown, 3 is 

capable of reacting with methanol to give 2. 

The endoperoxide 8 is similar to the intermediates reported to be formed by the 

reaction of singlet oxygen with indenes" and methoxystyrenes"; however, these substrates 

generally react with a second molecule of singlet oxygen to afford polyoxygenated products. 

The intermediates 8 and 9 would be expected to be much less reactive toward singlet oxygen 

than 1 due to the strong electron withdrawing nature of the carbonyl groups and the fact that 

the enone systems are s-trans. 
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